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Abstract

We examine in a dyanmic model how a firm determines the optimal level
of innovation, and how a firm chooses between innovation and imitation.
This paper considers a local firm, which is competing with a foreign, more
productive, firm in terms of quantity, and at the same time, the local firm
is able to spend the optimal amount of resources on innovation, with the
purpose of closing the technology gap with the foreign firm. At the time
of innovation, the firm has the option of spending less (or no) resources
on innovation, if it decides to simply learn from (imitate) the foreign firm.
Whether a firm chooses to imitate or to innovate depends on, among other
things, how fast and how much it can imitate and also the cost of innovation.
A full consideration of the decision of the local firm is allowed, as how a
change in technology may affect the outputs of the firms, the market demand,
and its profit will be analyzed carefully.

c° Koji Shimomura and Kar-yiu Wong



1 Introduction

International rivalry between firms in different countries has long been an
important issue for trade theorists, business decision makers, and government
policy planners. Rivalry can take many forms, including competition in terms
of output production and technology. Traditionally, the trade theory pays
more attention to the competition between foreign firms in terms of output
production,1 but much less to technology.
Technological progress is an important topic for economists. In the cur-

rent growth literature, technology progress is treated as part of the model
to be analyzed, and innovation and imitation are two of the most important
channels through which a firm improves its technological level and competi-
tiveness in the world market. Innovation is a deliberate action of a firm: It
spends resources in a process through which the factors of production can
be made more productive, or through which a new way of grouping factors
of production can be found to make the production more cost effective, or
through which a new product (or product with a different quality) can be
found. In the economics theory, it is assumed that a firm spends resources
on improving its technology in order to maximize an objective function (such
as profit). Imitation is a less purposeful action. The firm tries to learn from
other firms that have similar (in type) but more advanced technology. Learn-
ing, or imitating, is usually a much less costly process. In general, because
firms involved have similar type of technology, they also compete in terms of
output.
Most of the papers in the literature analyze either innovation and imita-

tion separately. For example, in the past, Solow (1956) and Chipman (1970)
regard innovation as an exogenous process. More recently, the work of Gross-
man and Helpman (1991), Rivera-Batiz and Romer (1991), and many others
endogenize the innovation decision making. All these papers, however, do
not allow the firms to imitate although their work does consider competition
between the firms involved and other firms in terms of output, and the choice
between innovation and imitation by the same firm is not considered. On
the other hand, papers that considered imitation usually focus on imitation
only, without the possibility that firms imitate have the option of innovation.
The consideration of either innovation or imitation, but not both, ignores

the fact that many firms do imitate and innovate, although not necessarily

1See, for example, Wong (1995, Chapter 12) for a recent survey of some of the issues.
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at the same time. Even firms in developing countries have the option of
innovate, and in various periods of time and for some industries, firms do
spend significant resources on innovation, with the purpose of raising their
technology levels.
To illustrate the choice between innovation and imitation, we can consider

the case of Japan. Since the fifties, Japan gradually had been converting
many low-tech industries to high-tech industries. At that time, many of the
firms found that they were competing with American firms that had superior
technologies. However, many Japanese firms quickly closed the gaps between
their technology levels and those of the American firms. A common strategy
for many firms was to first learn the American technology (imitation), and
then to spend more and more resources on improve their own technology
(innovation). As a result, many succeeded in not only catching up with the
American technology but also surpassing the latter.
The Japanese model has been proved to be successful in raising their

technology competitiveness, at least for many industries. Many developing
countries, especially those in Asia, are following similar paths of technology
catching up and surpassing, although different countries have made different
achievements.2

In view of the development experience of these countries, we examine in
a dynamic model how a firm determines the optimal level of innovation, and
how a firm chooses between innovation and imitation. This paper considers
a local firm, which is competing with a foreign, more productive, firm in
terms of quantity, and at the same time, the local firm is able to spend the
optimal amount of resources on innovation, with the purpose of closing the
technology gap with the foreign firm. At the time of innovation, the firm
has the option of spending less (or no) resources on innovation, if it decides
to simply learn from (imitate) the foreign firm. Whether a firm chooses to
imitate or to innovate depends on, among other things, how fast and how
much it can imitate and also the cost of innovation. A full consideration
of the decision of the local firm is allowed, as how a change in technology
may affect the outputs of the firms, the market demand, and its profit will

2Hong Kong provides another example. For a long time, pirated, illegal softwares had
been available in the local economy (imitation). The government banned the production
and sale of these softwares, but recently the restrictions on piracy had been tightened.
Starting from April 1, 2001, it became a crime to use pirated softwares. This came at a
time when more and more local firms are developing new softwares (innovation) and are
asking for intellectual property rights protection from the government.
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be analyzed carefully. This paper can shed light on how firms in developing
countries are competing with advanced firms in developed countries.
Section 2 of this explains the rivalry between two firms, one in each of the

two countries. At any point of time, both firm take their technologies as given
and compete in the rest of the world. Section 3 considers a dynamic model
in which the local firm chooses the optimal resources on innovation, trying
to catch up with the foreign firm. To simplify our analysis, the technology
of the foreign firm is kept as constant. In this section, the special case of
innovation only is considered. This assumption allows us to analyze more
carefully the conditions under which the local firm will choose to surpass the
technology of the foreign firm. Section 4 introduces imitation, and compares
the major features of imitation and innovation. It also analyzes the choice
of the local firm between imitation and innovation. We show the existence
of an interesting case, in which the local firm first imitates, then turns to
innovation, and then imitates again. In another case, the local firm may
choose to imitate only, without spending any resources on innovation. In
section 5, we examine how the local government may use an export tax to
induce the local firm to innovate more in order to improve its technology
even further in the long run. The last section concludes.

2 Rivalry between Two Firms

Consider two countries labeled home and foreign. In each of these two coun-
tries, there is a firm producing a homogeneous product. Call the firm in the
home country firm 1 (or the home firm) and that in the foreign country firm
2 (or the foreign firm). At any point of time t, the technology of firm i is
described by a marginal cost ci(t) > 0 and a fixed cost Fi > 0, i = 1, 2. The
fixed cost of each firm is constant over time and is independent of the output
level. Concerning the marginal costs, the following simplifying assumptions
are made:

1. The home firm has the option of imitation and/or innovation while
the foreign firm does not. This means that c1(t) could drop over time
while c2(t) is constant over time. From now on foreign marginal cost is
simply represented by c2.

2. The foreign firm initially (when t = 0) has an advanced technology,
i.e., a lower marginal cost, c1(0) > c2.
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That the technology of the firm is assumed to be fixed is to simplify the
analysis, but we will talk about the implications of this assumption later. As
the home firm lowers c1(t) over time through imitation or innovation, the gap
between c1(t) and c2 is getting smaller and smaller; we say that the home
firm catches up. If the home firm chooses to innovate, it is possible that there
exists a finite time t0 so that for t > t0, c1(t) < c2. If this happens, we say
that the home firm surpasses.3 In order to simplify our notation, we drop
the time subindex if no confusion arises; for example, c1(t) is simply written
as c1.
There is demand for the product in the rest of the world but not in the

home and foreign countries, meaning that the outputs of the two firms are
exported. Let the demand be denoted by p = a− bQ, where Q is the market
demand and p the market price. For simplicity, the time indices for p and Q
are suppressed. Both parameters a and b are positive and constant over time,
and a is large enough to support these two firms. Assuming no production of
the product in the rest of the world, equilibrium of the market is described
by:

Q = q1 + q2, (1)

where qi is the output of firm i, i = 1, 2. We now examine the production
decision of the firms at any point of time, t. At any given point of time, the
marginal costs of the firms are constant. The profit of firm i, i = 1, 2, is
given by

πi = p(Q)qi − (ciqi + Fi). (2)

Assuming Cournot competition and an interior solution, the first-order con-
dition for firm i is

a− 2bqi − bqj − ci = 0, (3)

where i 6= j, and i, j = 1, 2. Condition (3) for each firm represents its best
response to the output of its rival. The firms’ best response functions are
then combined to give the Nash equilibrium, from which we can determine
the profit of each firm:

πi(ci; cj) ≡ 1

9b
[(a+ cj)− 2ci]2 − Fi. (4)

As mentioned above, a is assumed to be sufficiently large so that each firm
gets a non-negative profit.

3We can have the special case in which t0 is at infinity so that c1(t) > c2 for all finite
times.
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3 The Process of Innovation

We now examine how technology of the home firm may be improved over
time.4 In this section, we examine innovation. The choice between innovation
and imitation for the home firm will be analyzed later.

3.1 The Problem of the Home Firm

Suppose that the home firm is able to reduce its marginal cost at a rate
of ċ1 after paying an expenditure on R & D equal to g(−ċ1/c1). The cost
function g(x), which is defined over the interval [0, x̄], where x̄ > 0, satisfies
the following properties:

1. g(0) = 0 and g(x) > 0 for all x ∈ (0, x̄];
2. g0(x) > 0 and g00(x) > 0 for all x ∈ (0, x̄);
3. limx→0 g0(x) = β > 0; limx→x̄ g0(x) = +∞.

A possible g(x) function is illustrated in Figure 1. We define x over an
interval, implying that the marginal cost decreasing rate is bounded from
above. This assumption is made for simplifying the mathematical analysis,
and seems to be a reasonable one, since it may be too costly for the home
firm to reduce its marginal cost at a very high rate.
We consider the following game. At each point of time, the decision of

the firms can be conceptually divided into two stages. In the first stage,
the home firm chooses the rate at which its marginal cost is reduced (which
can be zero), taking the marginal cost of the foreign firm as given. In the
second stage, both firms compete in a Cournot fashion, with the marginal
costs given.
The problem of the home firm is to choose a path of reducing its marginal

cost, knowing that once its marginal cost has been chosen, the firms compete
in terms of output. Because the second stage at any point of time is the same
as the case described in the previous section, the following analysis focuses
on the first stage, with both firms fully aware of the effects of changes in
home firm’s marginal cost on their outputs and profits.

4Recall that for simplicity the technology of the foreign firm is assumed to be fixed over
time.
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The problem of the home firm is:

max
x

Z ∞
0
[π1(c1; c2)− g(x)]e−rtdt (5)

subject to

ċ1 = −xc1
0 ≤ x ≤ x,

where c1(0) > 0 and c2 > 0 are given and r > 0 is the discount rate.

3.2 Existence of an Optimal Solution

We now examine whether an optimal solution to the problem in (5) exists.
Because the convexity of the profit function implies that the Hamiltonian
associated with the present dynamic problem is not concave, the Mangasarian
or Arrow sufficiency conditions are not applicable . To achieve our objective,
we introduce an existence theorem implied by Seierstad and Sydaeter (1987,
Theorem 15, p. 237).

Theorem 1: Consider the following dynamic optimization problem

max
Z ∞
0
u(x(t), c(t))e−rtdt, r > 0

subject to

ċ(t) = f(x(t), c(t))

c(0) = c0, given

and
x(t) ∈ U , a fixed subset of R1.

Suppose:

1. u(x, c) and f(x, c) are continuous.

2. U is closed and bounded.
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3. There exist piecewise continuous functions φi(t) ≥ 0, i = 0, 1, withR∞
0 φi(t)dt <∞ such that¯̄̄

u(x(t), c(t))e−rt
¯̄̄
≤ φ0(t) (6)

|f(x(t), c(t))| ≤ φ1(t) (7)

for all admissible pairs (x(t), c(t)) and all t ≥ 0.
4. There exist piecewise continuous, non-negative functions d(t) and e(t)
such that°°°(u(x, c)e−rt, f(x, c))°°° ≤ d(t) kck+ e(t), for all (x, c, t). (8)

5. The set

N(c, U, t) ≡ {(u(x, c)e−rt + z, f(x, c)) : x ∈ U, z ≤ 0}
is convex for all (c, t).

Then the existence of an admissible pair implies the existence of an
optimal pair (c∗(t), x∗(t))t=∞t=0 .

Theorem 1 is used to give the following existence theorem, the proof of
which is given in the appendix:

Proposition 1 For any given initial condition, there exists an optimal so-
lution to the above problem.

3.3 Analysis of An Optimal Solution

Once the existence of an optimal solution is assured, we can try to analyze
it by making use of the standard necessary conditions for optimality. Let us
denote the Hamiltonian for the home firm’s problem in (5) by

H ≡ π1(c1; c2)− g(x)− λxc1.

To simplify our notation, in what follows we simply write π1(c1; c2) as π(c1).
According to the standard necessity theorem5, for any optimal solution to the

5See Seierstad and Sydsaeter (1987, Theorem 12, p. 234).
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problem in (5), there is a continuous and piecewise differentiable continuous
function of time λ(t) which satisfies the following conditions:6

∂H

∂x
= −g0(x)− λc1 ≤ 0 (9)

[g0(x) + λc1]x = 0, x ≥ 0
λ̇ = rλ− π0(c1) + λx. (10)

Let us define y ≡ −λc1 and denote the inverse function of g0(x) by ψ(y), i.e.,
x = ψ(−λc1) = ψ(y). Condition (9) and the properties of g(.) imply that
function ψ(y) has the following properties:

ψ(y) = 0 for any y ∈ [0, β] (11)

ψ0(y) > 0 for any y > β (12)

lim
y→∞ψ(y) = x̄. (13)

A possible function x = ψ(−λc1) is depicted by the curve in Figure 2. Using
this function, we see that an optimal solution for the home firm has to satisfy
the following dynamic system of equations:

ċ1 = −c1ψ(−λc1) (14)

λ̇ = rλ− π0(c1) + λψ(−λc1). (15)

The phase diagram corresponding to the dynamics equations (14) and (15)
is illustrated in Figure 3. Let us explain this diagram and use it to examine
the properties of the dynamic system. First, curve ABCDE represents the
equation β = −λc1 = y. In the region on or above the curve, y ≤ β. By
condition (11), ψ(−λc1) = 0, and by (14), ċ1 = 0. Similarly, in the region
below curve ABCDE, ċ1 < 0. Second, let us consider the condition rλ−
π0(c1) = 0. Making use of home firm’s profit function (4), the condition
reduces to

λ =
4

9br
[2c1 − (a+ c2)]. (16)

Recall that c2 is given, condition (16) can be represented by the straight
line FBDG in Figure 3. Let us focus on this line. By (15), λ̇ = λψ(−λc1).

6Let I be an interval in R and λ(t) be a function of time: t ∈ I → R. λ(t) is piecewise
continuously diffrentiable if there is a piecewise continuous function φ(t) : I → R such
that for almost every t ∈ I, φ(t) is differentable at t and dλ(t)/dt = φ(t).
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Because on and above (below) ABCDE −λc1 ≤ (>) β, condition (11) again
implies that

λ̇ =


=
<
=

 0 on

FB (including point B)
BD (excluding points B and D)
DG (including point D)

.

Similarly, on curved segment BCD (excluding points B and D), λ̇ = rλ −
π0(c1) > 0 because ψ(β) = 0. It follows that by continuity there is a locus
between points B and D along which λ̇ = 0. We depict this by locus BHD
(excluding points B and D), which is in between line BD and curve BCD.
Making use of the above results, we can depict possible trajectories for

the dynamic system by the curves with arrows in Figure 3. The above results
are summarized as follows.

Lemma 1. For the dynamic system given by (14) and (15), ċ1 = 0 on and
above curve ABCDE while λ̇ = 0 on FBHDG. A stationary state character-
ized by no movement in c1 and λ can be depicted by line segments FB and
DG.

Despite the existence of multiple stationary states, for any given initial
condition c1(0) the optimal solution may uniquely exist. This is what we
now turn to. Figure 3 shows the initial value c1(0). When the home firm
has chosen the initial value λ(0), the initial point is represented by a point
on the vertical line RS. In terms of the possible location of the initial point,
line RS can be divided into four regions:

1. line segment RC, including point C. In this region, c1(t) does not
change, i.e., c1(t) = c1(0) for all t ≥ 0. The co-state variable λ(t),
however, is rising. Thus the adjustment path is a vertical line, rising
upward.

2. segment CN, excluding point N. In this region, c1(t) will be decreasing
while λ(t) will initially be rising (if the initial point is in between points
C and H) or falling (if the initial point is below point H). If, for example,
the initial point is at point M, then the trajectory will be something
like schedule MM0M00M000.
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3. point N. With an initial point at N, the trajectory will be along path
NB.

4. line segment NS, excluding point N. The trajectory will be along a path
such as LY, which will sooner or later go below point B.

It turns out that point B, which is represented by (c∗1,λ
∗), is an important

point in the present analysis, where:

λ∗ =
4

9br
[2c∗1 − (a+ c2)] (17)

−λ∗c∗1 = β ≡ g0(0). (18)

To determine the optimal path, let us introduce a necessary condition as
stated in the following theorem, which is implied directly by Seierstad and
Sydaeter (1987, Theorem 16, pp. 244—5):

Theorem 2: Consider the dynamic optimization problem stated in
Theorem 1 and assume that (x∗(t), c∗(t)) is optimal withZ ∞

0

¯̄̄
u(x∗(t), c∗(t))e−rt

¯̄̄
dt <∞

and Z ∞
0
|f(x∗(t), c∗(t))|dt <∞ (19)

and that there exist nonnegative numbers A,B,C, a, b, k with a > 0 and b > k
such that for all t ≥ 0 and all c

∂

∂c
u(x∗(t), c)e−rt ≤ Ae−at (20)

∂

∂x
u(x∗(t), c)e−rt ≤ Be−bt (21)

∂

∂c
f(x∗(t), c) ≤ Cekt (22)

∂

∂x
f(x∗(t), c) ≤ k. (23)

Then, there exists a continuous and twice-continuously differentiable λ∗j(t)
which satisfies the following transversality condition

lim
t→∞ λ∗(t)e−rt = 0. (24)
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as well as the standard necessary conditions for optimality.

From Theorem 2 and condition (24), it is clear that for sufficiently small
r (> 0), the transversality condition requires that λ(t) remains finite as time
approaches infinity. This theorem thus precludes regions RC, CN (excluding
point N), and NS (excluding point N) for the optimal initial value λ(0). In
other words, the home firm should choose the value of λ(0) as given by point
N.
Since the existence of an optimal trajectory is guaranteed, the trajec-

tory NB that converges to the stationary state must be the unique optimal
solution. We now arrive at the following proposition.

Proposition 2 Suppose that (π(cj(∞))− gj(x) ≤) π(0)− gj(x) < 0. (i) For
any c1(0) > c∗1, there is a sufficiently small r(>0) such that KB describes
the unique optimal solution. (ii) for any c1(0) ∈ (0, c∗1), c1(t) = c1(0), i.e.,
x(t) = 0 for any t > 0, is the optimal solution.

The above analysis implies a simple rule for the home firm: If its initial
marginal cost is equal to or less than c∗1, then it should stay unchanged, with
the co-state variable chosen to be the value corresponding to a point on line
segment FB. If the initial value of its marginal cost is greater than c∗1, then
the value of the co-state variable should be chosen to be a point on trajectory
KB.

3.4 Comparative Statics

We now examine how the stationary-state value of the marginal cost is af-
fected by some of the parameters. Here we focus on the stationary state
represented by point B, which is described by equations (17) and (18). Sub-
stituting condition (18) into (17), we have the quadratic equation

2(c∗1)
2 − (a+ c2)c∗1 +

9brβ

4
= 0, (25)

which can be solved for c∗1:

c∗1 =
1

4

·
(a+ c2)−

q
(a+ c2)2 − 18brβ

¸
. (26)

Note that a is assumed to be big enough so that the (26) represents a real
root.7 It is clear from (26) that ∂c∗1/∂b > 0 and ∂c∗1/∂r > 0. Partially

7Note that the other root represents point D in Figure 4.
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differentiating (26) with respect to (a+ c2), we have

∂

∂(a+ c2)
c∗1 =

1

4

1− (a+ c2)q
(a+ c2)2 − 18brβ

 < 0. (27)

The above results are summarized in the following proposition:

Proposition 3 The stationary-state marginal cost of home firm c∗1 depends
on the parameters in the following ways.

1. (demand parameters): ∂c∗1/∂a < 0, ∂c
∗
1/∂b > 0; [A lower or a steeper

demand curve gives a higher stationary-state marginal cost.]

2. (discount rate): ∂c∗1/∂r > 0; [A higher future evaluation (= a smaller
r) gives a lower c∗1.]

3. (the rival’s marginal cost): ∂c∗1/∂c2 < 0. [A less efficient rival firm (= a
higher c2) will induce the home firm to choose a lower stationary-state
marginal cost.]

3.5 Catching Up and Surpassing

Condition (27) and the previous proposition imply a negative relation be-
tween the two firms’ marginal costs in the steady state. Such a relation can
be illustrated by the negatively-sloped schedule MN in Figure 4. For exam-
ple, if the initial point representing the technologies (marginal costs) of the
firms is above schedule MN, say, point A, then over time, the home firm
will reduce its marginal cost until a point on the schedule vertically below
point A is reached, i.e., point E. Note that point E is the steady-state point
corresponding to the marginal cost of the foreign firm. In this particular, the
home firm catches up.
One interesting issue we want to investigate is whether the home firm

chooses to have a technology higher than that of the foreign firm, or whether
the home firm surpasses. Figure 4 provides us the answer, which depends
on the location of the initial point. The diagram shows three possible cases
with initial points, A, B, and D, all representing the same initial marginal
cost of the home firm, c01, but different foreign marginal cost. If the initial
point is A, meaning that the initial foreign marginal cost is cE2 , then as the
home firm innovates, point A shifts down until it reaches point E, at which
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the home marginal cost is cE1 . In the diagram, point E is above the 45
◦-line,

meaning that cE1 > c
E
2 , i.e., although the home firm catches up, it does not

surpass. Point D represents another case: The home firm eventually gets a
technology higher than that of the foreign one at the stationary state point
G: cG1 < c

G
2 , i.e., the home firm first catches up and eventually it surpasses

the foreign firm. Point B, which is directly above the intersecting point
between the 45◦-line and schedule MN. When the final point F is reached,
both firms have the same marginal cost, c̄: The firms become identical in
terms of marginal cost.8

The value of c̄ can be determined from (25). Setting c∗1 = c2 = c̄, the
condition reduces to

c̄2 − ac̄+ 9brβ/4 = 0,
which gives9

c̄ =
a−√a2 − 9brβ

2
.

The above results are summarized in the following proposition:

Proposition 4 Suppose that the foreign technology is superior to the home
technology, and if innovation is the only way the home firm can use to im-
prove its technology. (a) If c2 < c̄ < c∗1 < c1(0), then the home firm will
catch up but no surpassing will take place. (b) If c̄ < c2 < c1(0), then the
home firm will catch up and will eventually surpass the foreign firm. (c) If
c̄ = c2 < c1(0), then the home firm will catch up in terms of technology until
the two firms have the same marginal cost. (d) If c2 < c∗1 < c̄ < c1(0), then
no catch up or surpass will take place.

In terms of Figure 4, the four cases in the above proposition can be
depicted by points A, B, C, and a point in between points E and H, respec-
tively.

4 Imitation Versus Innovation

So far, we have analyzed innovation as the only channel through which the
home firm can improve its technology. We now introduce the second channel:

8The firms may still have different fixed costs. They will choose to produce the same
output, but their profits may be different.

9The other root represents point D in Figure 3. Recall that a is assumed to be suffi-
ciently large so that c̄ is a real number.
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imitation.

4.1 The Mechanics of Imitation

Imitation here means a direct and costless technology spillover from the for-
eign firm to the home firm.10 Specifically, we assume that the home firm
learns from the foreign firm with an advanced technology, without any costs,
so that its marginal cost decreases over time according to the following con-
dition:

ċ1 = −h(c1 − c2)c1, (28)

where function h(w) has the following properties:

1. h(w) = h0(w) = h00(w) = 0 for w ≤ 0;
2. h(w) > 0, h0(w) > 0 and h00(w) > 0 for w > 0.

Property (1) means that no imitation will take place if the foreign tech-
nology is not superior to the home technology, and property (2) implies that
the rate of imitation is higher the greater the gap between the foreign and
home technologies. Imitation is different from innovation in that it repre-
sents a costless flow of technology from the foreign firm to the home firm.
The result of imitation is that the home firm’s marginal cost decreases at a
rate given by (28). The approach we adopt is that if the home firm spends
nothing on R&D, its technology improves according to (28), but if it spends
on R&D, then its marginal cost will drop as given by function g(x). Since
innovation is costly but imitation is costless, the firm will never spend re-
sources on innovation that will cause a rate of reduction of its marginal cost
lower than that given by (28).

4.2 The Imitation/Innovation Problem

Since to the home firm imitation is an external process, there is no opti-
mization for the firm. So the choice between imitation and innovation boils
down to whether the home firm would spend resources on innovation and

10That imitation is assumed to be costless is to simplify our analysis. Alternatively, we
can assume that imitation requires some costs, but as long as they are lower than those
for innovation, our analysis remains qualitatively the same.
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how much. As a result, the dynamic optimization problem of the home firm
can be formulated as

max
x,δ

Z ∞
0
[π(c)− δg(x)]e−rtdt (29)

subject to

ċ1 = −δxc1 − (1− δ)h(c1 − c2)c1
0 ≤ x ≤ x
δ ∈ {0, 1}

c1(0), c2 > 0 are given.

In (29), δ is a control variable that has two values, 0 and 1. Choosing δ to
be 1 means that the home firm innovates, and if δ = 0, the firm imitates.
This problem looks similar to the previous one; the difference is that in the
previous problem, imitation is not an option so that the home firm in general
has an incentive to spend resources on innovation. In the present problem,
since imitation exists and is costless (or much less costly), under certain
conditions the home firm may choose to spend nothing on innovation.
To solve the problem in (29), we try to make use of the analysis and

results in the previous section. First, we slightly modify the above problem
so that δ is chosen from the closed interval [0, 1], not the set {0, 1}. With
this modification, we first check for the existence of an optimal solution, i.e.,
checking the five conditions in Theorem 1. It is easy to see that conditions
1-4 in Theorem 1 are satisfied. To check for condition 5, note that the set
N(c, U, t) now becomes

N(c, U, t) = {(X,Y ) : δ ∈ [0, 1], x ∈ [0, x], z ≤ 0} ,
where

X =
·
1

9b
{2c− (a+ c2)}2 − F1 − δg(x)

¸
e−rt + z

Y = −δxc− (1− δ)h(c− c2)c.
Lemma 2: The set N(c, U, t) is convex.

Proof. See the appendix.

Making use of Lemma 2, we immediately have the following theorem:
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Theorem 5 There is an optimal solution to the modified optimization prob-
lem.

To find out the optimal solution, let us define the Hamiltonian for the
present problem as

H = π(c1)− δg(x) + λ[−δxc1 − (1− δ)h(c1 − c2)c1]. (30)

4.3 Pure Imitation

In this section let us look at the special case when only imitation exists, i.e.,
the firm chooses δ = 0. The dynamic system becomes

ċ1 = −h(c1 − c2)c1 (31)

λ̇ = rλ− π0(c1) + λ{h(c1 − c2) + c1h0(c1 − c2)}. (32)

Note that since this is purely an external process, there is no optimization for
the home firm. Making use of the properties of function h(.), we can derive
the phase diagram of the system in Figure 5 as follows.
First, we note that imitation exists only when c1 > c2, i.e., c1 is decreasing

until it is equal to c2. Next, we draw line ABC that represents the equation
rλ − π0(c1) = 0. In the region below the line, rλ − π0(c1) < 0, and since
λ < 0, condition (32) implies that λ̇ < 0. In the region above line ABC,
rλ − π0(c1) > 0, This implies that λ̇ > 0 at least when λ is numerically
small enough. Thus we can find combinations of c1 and λ that gives λ̇ = 0.
In the diagram, these combinations are illustrated by schedule BDC. Note
that points B and C are on this schedule. To see why, note that at point B,
c1 = c2, implying that h(c1−c2) = h0(c1−c2) = 0. At point C, λ = λ̇ = 0.We
further note that there exists a saddle path, shown as KB in the diagram, so
that an initial point on it will move along it toward point B. Based on this
analysis, the phase diagram can be illustrated in Figure 5.

4.4 On Choosing between Innovation and Imitation

We now focus on the Hamiltonian (30). Since δ has to be chosen between
the closed interval [0, 1] to maximize the Hamiltonian, we can see that the
firm will choose δ = 1 if

−g(ψ(−λc1)) + (−λc1)ψ(−λc1) > (−λc1)h(c1 − c2). (33)
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In other words, if condition (33) holds, the firm will choose to innovate over
imitation. Alternatively, the firm will choose δ = 0 and to imitate if

−g(ψ(−λc1)) + (−λc1)ψ(−λc1) < (−λc1)h(c1 − c2). (34)

The home firm is indifferent to innovation and imitation if (c1,λ) satisfies

−g(ψ(−λc1)) + (−λc1)ψ(−λc1) = (−λc1)h(c1 − c2). (35)

Condition (35) is an interesting one because it divides the (c1,λ) space into
region(s) in which the firm chooses δ = 1 and region(s) in which the firm
prefers δ = 0. So let us analyze this condition more carefully. First, from the
definition of function h(.), when c1 = c2,

h(c1 − c2) = 0. (36)

Also, from the definitions of g(.) and ψ(.), for any λ that satisfies −λc1 ≤ β,

−g(ψ(−λc1)) + (−λc1)ψ(−λc1) = 0. (37)

Consider Figure 6, which shows the value of c2. Points along the vertical
line through c2 satisfy condition (36). We construct curve ABCDE, which
satisfies−λc1 = β. This means that in the region above curve ABCDE, which
represents −λc1 ≤ β, condition (37) is satisfied. Combining these results, we
say that vertical segment NC is part of the curve that represents (35). We
now derive the rest of the curve for (35), which is shown as curve LMC in
Figure 6.
Let us differentiate condition (35) to yield the slope of LMC:

dλ
dc1

¯̄̄̄
¯
LMC

= −(g
0/c1)2

g
[c1h

0(c1 − c2) + h(c1 − c2)− ψ(−λc1)] . (38)

If we evaluate the slope in a region close to point C, i.e., c1 is slightly greater
than c2, (38) reduces to

dλ
dc1

¯̄̄̄
¯
LMC at C

=
(g0/c1)2ψ(−λc1)

g
> 0.

When c1 is sufficiently greater than c2 so that c1h0(c1 − c2) + h(c1 − c2) >
ψ(−λc1), then the slope of schedule LMC is negative. Thus condition (35)
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is represented by the vertical segment CN plus a curve like LMC, which has
a zero slope somewhere at point M. Making use of the above results, we now
know that if the firm is at a point below (or above) LMC, it will choose
innovation (or imitation).
We now derive the stationary state of the system. Like what we did

earlier, we construct schedule ABCDE, which represents −λc1 = β. As ex-
plained in the previous section, in the region above this schedule, ċ1 = 0 if
technology progress can come only from innovation, and in the region below
this curve, c1 drops if the firm chooses to innovate. We also construct line
FBDG, which represents rλ = π0(c1). The co-state variable λ is stationary in
line segments FB and DG, but is falling in line segment BD. The coordinates
of point B are c∗1 and λ∗.
The analysis in the previous section can also be used here to show that if

innovation is chosen, there exists a saddle path which represents the optimal
solution. If, however, imitation is preferred, it exists so long as c1 > c2. In
Figure 6, such an optimal path is represented by schedule KB. This means
that c1 and λ will adjust until point B (c∗1,λ

∗) is reached.
In drawing Figure 6, two possible cases have to be distinguished. In case

(a), c2 > c̄, where as shown earlier c̄ is the value of the marginal cost of the
foreign firm to which the home firm will respond with innovation until its
marginal cost is the same as the foreign one. When c2 > c̄ in the present case,
the home firm, if innovation is the only option for technology improvement,
will choose to have a stationary-state marginal cost lower than c̄. In other
words, c∗1 < c2. This is the case shown in Figure 6.
Before turning to the second case, let us analyze this case further. We

explained earlier that if condition (33) is satisfied, or if the point in Figure
6 is below schedule LMC, innovation will be chosen, but if condition (34)
holds, the firm will choose imitation. Furthermore, imitation exists only if
c1 > c2. Using the analysis in the previous and present sections, we can
find an optimal path for the home firm, which is shown as KQB in Figure
6. This path cuts schedule LMC at point Q, with KQ (QB) above (below)
schedule LMC, and will reach point B. We can use the approach introduced
in the previous section to argue that trajectories above or below KQB are
suboptimal.
Thus the home firm will choose to imitate along the segment KQ, but

will choose to innovate along the segment QB. If the initial marginal cost of
the home firm is sufficiently close to that of the foreign firm, then the initial
point is below LMC. This means that only innovation occurs.

18



In the present case, the stationary-state value of c1 is less than c2. This
means that the home firm catches up and eventually surpasses the foreign
firm.

Proposition 6 Suppose that c2 > c, which implies c∗1 < c2. The optimal
trajectory is depicted like KQB in Figure 6. If the initial cost c1(0) is suffi-
ciently great, there is an early stage during which the home firm imitates the
advanced foreign firm. When c1 is lowered sufficiently, the home firm stops
imitation and starts resource-using innovative activity. Its marginal cost c1
monotonously converges to c∗1.

Remark 1 It is clear that in Proposition 4 δ is chosen as either 0 or 1.
Thus, Proposition 4 can be straightforwardly carried over to the case of the
original dynamic optimization (36) in which δ is in an interval (0, 1), not
in a two-element set {0, 1}.

We now turn to an alternative case (b) with c1 < c̄. We analyzed in the
previous section that if innovation is the only option for technology improve-
ment, the home firm will choose to be less productive than the foreign firm.
In the present case in which both innovation and imitation are available, an
interesting question is whether the home firm will remain less productive in
the stationary state.
The analysis is carried out in terms of the phase diagram Figure 7, which

can be derived in a similar way. Schedule ACBDE represents −λc1 = β.
Point C corresponds to the marginal cost of the foreign firm, c2, while point
B is the intersection point with line FBDG, which stands for rλ = π0(c1). In
Figure 6, point B is the stationary-state point, with both c1 and λ remaining
constant. In the present case, would point B be still the stationary-state
point? The answer is no because at this point c1 > c2. Therefore imitation
still exists until c1 drops down to be the same as c2.
As a result, the optimal path will look something like schedule KNPR

in Figure 7. It is downward sloping, as both c1 and λ are declining. The
important thing is that the path will end at point R, not point B. The reason
is that R is a point on FB so that λ̇ = 0, and at R c1 = c2 so that imitation
stops. Also, since c2 < c̄, meaning that innovation is no longer profitable. In
other words, in the stationary state, both firms have the same marginal cost:
the home firm catches up but does not surpass.
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In the diagram, we can also construct schedule LMC. As analyzed before,
a point below (above) the schedule means that the home firm finds innovation
(imitation) a better option for technology improvement. Depending on the
relative positions of the optimal path KNPR and LMC, two cases can be
identified. In the case shown in the diagram KNPR cuts LMC at points
N and P. Along segments KN and PR, the home firm imitates, while along
segment QP the firm innovates.
An alternative case, which is not shown, is one in which the optimal path

is entirely above LMC. This means that the home firm just imitates and will
not spend resources on innovate.

Proposition 7 Suppose that c2 < c, which implies c2 < c∗1. If c2 is suffi-
ciently close to c, the converging trajectory crosses the innovation area at an
intermediate stage like in Figure 7. It is possible that only imitation takes
place during the whole period.

From the analysis presented above, we can see that whether the local
firm chooses to innovate or imitate depends on the market conditions and
the initial conditions such as the marginal costs of the firms. Basically, we
can distinguish between the following two cases:

1. c2 > c̄. In this case, the local firm will improve its technology until it is
more productive than the foreign firm. In other words, the local firm
surpasses the foreign firm in terms of technology. This is the case shown
in Figure 6. The diagram shows that as long as the initial marginal
cost of the local firm, c1(0), is sufficiently high, the firm will imitate
first. This is because the large gap between the marginal costs makes
imitation more cost effective. Over time imitation is not so effective,
and eventually it comes to the point at which the firm is willing to spend
resources on innovation. In other words, the local firm first imitate and
then innovate.

2. c2 < c̄. In this case, the local firm will catch up but will not surpass
the foreign firm. Figure 7 shows the case in which the local firm first
imitates, then innovates, and finally imitates. Of course if the marginal
cost of the local firm is not too much higher than the foreign firm’s
marginal cost, it is possible that the local firm first innovates and then
imitates, or just imitates. One possibility not shown in Figure 7 but
mentioned above is that the optimal path is entirely above curve LMC.
In this case, the local firm will imitate only.
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5 Innovation As A Constraint

The current literature assumes that a firm is given the option of either in-
novate or imitate, but not both. We now use the present model, which is
more general as innovation and imitation are options for the home firm, to
examine what the present literature may have missed.
Let us first consider the case in which c2 < c̄. Figure 8 shows such as case.

With the marginal costs of the firms, c1(0) and c2, given, the initial point
on the optimal path of innovation/imitation is shown as point K, which is
below curve LMQC. As argued in the previous section, the optimal path of
the local firm is KQR. As explained, the local firm will innovate along path
KQ, and will imitate beyond point Q until point R is reached. At point R,
which represents the stationary state, the local firm’s marginal cost is the
same as that of the foreign firm.
Consider an alternative path of the local firm: It innovates only, without

the possibility of imitation. We want to examine the implications of taking
away of option of imitation from the firm. The optimal path is the one shown
in Figure 3, which is shown as path HB in Figure 8. We want to compare
the innovation path HB with the innovation/imitation path KQR.
First, we note that if imitation is allowed, the local firm is able to eventu-

ally lower its marginal cost to that of the foreign firm, c2. This is point R. If,
however, only innovation is allowed, the local firm will lower its marginal cost
to a lever higher than c2. This is because the foreign firm is very productive,
and as shown Figure 4 shows, the local firm will not choose to surpass the
foreign firm’s technology. The stationary state point is B.
Second, we note that path HB and segment KQ are described by equations

(14) and (15). Let point S be a point on path HB vertically above or below
point Q. If point S is above (below) point Q, then point H has to be above
(below) point K. Segment QR is described by equations (31) and (32).
Third, the position of point H relative to point K has an implication on

the resources spent on innovation. Let us consider the case shown in Figure
8. Since point H is higher than point K, the corresponding value of y ≡ −λc1
is lower at H than at K, i.e., yH < yK . Because x ≡ ψ(y) is an increasing
function of y and g(x) an increasing function of x, we have xH < xK and
g(xH) < g(xK). In other words, in the case shown, the local firm spends less
on innovation if innovation is the only means to improve technology. This
case is further illustrated in Figure 9. Schedule HB shows how much the local
firm spends, measured by g(x), on innovation over time when innovation is
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the only option for technology improvement. It is decreasing and approaches
zero as time goes to infinity. If the local firm has the option of innovation and
then imitation, it will innovate first, spending along KQ in the diagram. The
latter curve is also declining over time. When point Q is reached, the firm
switches to imitation, stopping all expenditure on innovation. After that, no
resources are spent, as the firm chooses imitation.
The diagram shows the case in which point Q is below schedule HB.

This means that if imitation is an option, the local firm will spend more on
innovation first, trying to lower its marginal cost at a faster rate, knowing
that beyond Q it has to spend nothing on imitation. However, it is possible
that point Q is above schedule HB. In this case, when imitation is possible,
the local firm spends more on innovation first and then less as compared with
what it will do in the absence of the imitation option.11

We now try to see how the cost of innovation may affect whether the
local firm spends more or less without imitation. To do that, let us slightly
modify the cost function of innovation: δg(z), where, as compared with the
previous function, δ > 0 is a parameter and z ≡ x/δ. We assume that the
function g(z) is the same as what was described earlier. As done before, ψ(.)
is defined as the inverse function of g0(z). The system of differential equations
(14) and (15) are replaced by

ċ1 = −c1δψ(−λc1) (39)

λ̇ = rλ− π0(c1) + λδψ(−λc1). (40)

On the other hand, the system of differential equations that describes the
imitation process is given by (31) and (32), and are repeated here:

ċ = −ch(c− c2) (41)

λ̇ = rλ− π0(c) + λ[h(c− c2) + ch0(c− c2)]. (42)

Note that while the differential equations (39) and (40) depend on the pa-
rameter δ, equations (41) and (42) do not. Moreover, the stationary state of
both systems are also independent of δ12, and so is the (imitation) trajectory

11The case in which point H is below point K in Figure 10 is not analyzed here, but
cannot be examined along the same line.
12Note that the stationary state is derived from

δψ(−λc1) = 0
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RQ in Figure 8. Now let us check how the (innovation) trajectory HB is
affected by the value of δ. The slope of the trajectory HB is

dλ

dc1

¯̄̄̄
¯
HB

=
rλ− π0(c1) + λδψ(−λc1)

−c1δψ(−λc1)
=

π0(c1)− rλ
c1δψ(−λc1) −

λ

c1
.

It is clear that the slope is getting steeper and steeper as δ is getting smaller
and smaller. As we showed in footnote 11, the stationary state is independent
of δ. It follows that for a sufficiently small δ, the two trajectories RQ and HB
never cross each other, i.e., in Figure 8 point S is above point Q. Furthermore,
if point S is above Q, and since the two trajectories HS and KQ come from
the same system of differential equations, HS and KQ do not cross. Thus we
can say that as δ is very small, trajectory HSB is entirely above trajectory
KQR.
What does a small δ mean? Recall that the cost of innovation is δg(z).

When δ is small, z becomes large. Because g(z) is bounded from above, δg(z)
approaches zero as δ approaches zero. This means that a small δ means that
the cost of innovation is low. By the proposition, low innovation cost implies
that trajectory HSB in Figure 8 is above trajectory KQR. In Figure 9, KQ is
entirely above the corresponding segment of schedule HB. This means that
if a local firm is given the option of innovation and imitation, and if the cost
of innovation is sufficiently low, then the firm will first spend more resources
on innovation, and then chooses nothing on technology progress beyond Q
because it learns from the foreign firm free of charge.
We now have the following proposition:

Proposition 8 If δ is sufficiently small, then (a) the cost of innovation is
small; (b) the constrained innovation trajectory HSB in Figure 8 is always
above the optimal trajectory KQR; and (c) the local firm will first choose to
spend more on innovation, and then spends nothing on imitation, as compared
with what it will do if imitation is ruled out.

rλ− π0(c1) = 0,

where, as long as δ > 0, the first equation is equivalent to −λc1 = β ≡ g0(0). Thus, the
stationary state is independent of δ.

23



6 Welfare Effects of Trade Policies

Suppose that the home firm has achieved the stationary state (point B in
Figure 3). Can the home government improve the home welfare by imposing
some trade policies? Specifically, we would like to examine whether the
home government which seeks to enhance the home welfare should impose
an export tax or not.
Let us denote by τ 1 an ad valorem export tax imposed by the home

government. The instantaneous home profit is

π1 = (a− bQ− τ 1)q1 − c1q1 − F1
= (a− bQ)− (τ 1 + c1)q1 − F1. (43)

On the other hand, the profit function of the foreign firm is the same as
before

π2 = (a− bQ)q2 − c2q1 − F2. (44)

Comparing (43) and (44), it is clear that an imposition of export tax means
that the marginal cost of the home firm rises so that the home firm has to start
R&D activity again. What we would like to check is whether this “forced”
improvement in technology of the export firm can enhance the national wel-
fare of the home country. Since we assume no demand and consumption in
the home and foreign countries, the home welfare can be represented by

W ≡
Z ∞
0
[π1 + τ 1q1]e

−rtdt. (45)

What we are going to check is the sign of

∂W

∂τ

¯̄̄̄
¯
τ=0

. (46)

To achieve our purpose, we have to write (43) in terms of c1. Considering
that the first-order conditions (3) derived earlier can be rewritten as

2bq1 + bq2 = a− (τ + c1) (47)

bq1 + 2bq2 = a− c2, (48)

we have

q1 =
1

3b
[a− 2(τ + c1) + c2] (49)

q2 =
1

3b
[a− 2c2 + τ + c1]. (50)
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Substituting (49) and (50) into (43), we get

π1 =
1

9b
[(a+ c2)− 2(c1 + τ)]2. (51)

Therefore, the partial differentiation of π1 + τq1 with respect to τ at τ = 0
yields

∂[π1 + τq1]

∂τ

¯̄̄̄
¯
τ=0

= −q1
3
[1 + 4c1τ ], (52)

where c1τ ≡ ∂c1/∂τ . Therefore,

∂W

∂τ

¯̄̄̄
¯
τ=0

= −
Z ∞
0

q1
3
[1 + 4c1τ ]e

−rtdt. (53)

To check the sign of (53), we need to know the time profile of c1τ(t) along
the optimal trajectory KB in Figure 3. Now, let us recall that the optimal
trajectory has to satisfy the system of differential equations

ċ1 = −c1ψ(−λc1) (54)

λ̇ = rλ− 4

9b
[2c1 − (a− τ + c2)] + λψ(−λc1). (55)

Partially differentiating both sides of (54) and (55) with respect to τ , we
have the system of variational equations

ċ1τ = c∗1λψ
0c1τ + (c∗1)

2ψ0λτ (56)

λ̇τ = −
·
8

9b
+ λ2ψ0

¸
c1τ + [r − c∗1λψ0]λτ − 4

9b
. (57)

Note that since c1(0) is given, c1τ(0) = 0. If initially the stationary state B
in Figure 3 is achieved, the coefficients are all time-invariant. Therefore, the
system of variational equations is a system of linear differential equations
with constant coefficients.
Let us denote by c̄1τ and λ̄τ the solution to

0 = cλψ0c1τ + (c∗1)
2ψ0λτ (58)

0 = −
·
8

9b
+ λ2ψ0

¸
c1τ + [r − (c∗1)λψ0]λτ − 4

9b
. (59)
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Solving for c1τ and λτ , we get

c̄1τ = − 4/9b

[8/9b− λτ/c∗1]
= − 1

a+ c2
< 0 (60)

λ̄τ =
λ

c∗1(a+ c2)
< 0. (61)

Note that we use (54) = (55) = 0 in order to derive the second equality in
(60). Since the Jacobian matrix corresponding to the system is the same as
the one corresponding to (56) and (57) evaluated at the stationary state, c̄1τ
and λ̄τ are nothing but the long-run effects of imposing an export tax on c1
and λ.
Now let us obtain the solution to the system of differential equations (56)

and (57). Since the two Jacobian matrices are the same, the characteristic
roots must be also the same, i.e., one positive and one negative roots, say
y1 > 0 and y2 < 0. Following the standard method to solve linear differential
equations, we have the solution.

c1τ = A1e
y1t +A2e

y2t + c̄1τ (62)

λτ =
y1 − (c∗1)λψ0
(c∗1)2ψ

0 A1e
y1t +

(y2 − c∗1λψ0)
(c∗1)2ψ

0 A2e
y2t + λ̄τ . (63)

Considering the initial condition c1τ(0) = 0 and that c1τ and λτ converge to
c̄1τ and λ̄τ , respectively, we have

A1 = 0

A2 = −c̄1τ = 1

a+ c2
.

Therefore, we derive

c1τ(t) = −c̄1τ(1− ey2t) = −(1− e
y2t)

a+ c2
. (64)

Since y2 < 0, for any t > 0, −(1 − ey2t)/(a + c2) < 0: An imposition of an
export tax reduces the marginal cost of the home firm not only in the long
run but also in the intermediate stage.
Now let us obtain the welfare effect of the export tax. Substituting (64)

into (53), we see that

∂W

∂τ

¯̄̄̄
¯
τ=0

= −
Z ∞
0

q1
3
[1 + 4c1τ ]e

−rtdt
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= −q1
3

Z ∞
0

"
1 +

4ey2t

a+ c2
− 4

a+ c2

#
e−rtdt

= −q1
3

Z ∞
0

"
a+ c2 − 4
a+ c2

+
4ey2t

a+ c2

#
e−rtdt

= −q1
3

"
a+ c2 − 4
(a+ c2)r

+
4

(a+ c2)(r − y2)
#

= −q1
3

(a+ c2 − 4)
(a+ c2)r(r − y2)

"
(a+ c2)r

a+ c2 − 4 − y2
#
. (65)

First, it is clear from the third equality that (65) is negative if a+ c2−4 > 0.
Let us assume that a+ c2−4 < 0. The characteristic equation corresponding
to the Jacobian matrix of (56) and (57) is

f(y) ≡
¯̄̄̄
¯̄̄ y − c∗1λψ

0 −(c∗1)2ψ0
8

9b
+ λ2ψ0 y − (r − c∗1λψ0)

¯̄̄̄
¯̄̄

= y2 − ry + c∗1ψ0
·
rλ+

8c∗1
9b

¸

= y2 − ry − 4c
∗
1ψ

0

9b

q
(a+ c2)2 − 18brβ = 0 (66)

where use is made of (56) = 0 and (33) in the text. Thus,

f(y2) = 0

Considering that f(y) > 0 for any y < y2 and that r(a+ c2)/(a+ c2−4) < 0,
we see that if

f

Ã
r(a+ c2)

a+ c2 − 4
!
> 0, (67)

then r(a+ c2)/(a+ c2 − 4)− y2 < 0, which implies that (65) is negative.
Let us check under what conditions (67) hold. Note that

f

Ã
r(a+ c2)

a+ c2 − 4
!
=

4r2(a+ c2)

(a+ c2 − 4)2 −
4c∗1ψ

0

9b

q
(a+ c2)2 − 18brβ. (68)

Since c∗1 does not depend on ψ0, we can say that (60) holds for a sufficiently
small ψ0.

27



Proposition 9 If 4 − (a + c2) < 0, an imposition of the export tax on the
home product reduces the home welfare. Even if 4 − (a + c2) > 0, we have
the negative welfare effect for a sufficiently small ψ0.

Remark: Suppose that in the stationary state the marginal cost of the home
firm is still higher than the foreign marginal cost. Then it is attempting for
the home government to take a measure to reduce the home marginal cost.
For example, suppose that the home government imposes an export tax.
The home firm faces an increase in its effective marginal cost [= (the home
marginal cost) +(an ad valorem export tax rate)]. As a result, the home
firm starts R&D activity. As (57) shows, the home marginal cost declines.
However, the above proposition asserts that under certain conditions the
R&D activity induced by the trade policy has a negative effect on the home
national welfare.

Finally, let us check the effects of the home export tax on π1 and π2. Note
that π2 represents in our model the foreign national welfare. Using (49), we
have

π1 =
1

9b
[(a+ c2)− 2(c1 + τ)]2

π2 =
1

9b
[(a− 2c2) + (a+ c1)]2.

Thus,

∂π1
∂τ

¯̄̄̄
¯
τ=0

= −4
3
q1(1 + c1τ )

∂π2
∂τ

¯̄̄̄
¯
τ=0

=
2

3
q2(1 + c1τ ).

By making a parallel argument to the analysis of the impacts on national
welfare, we can obtain the following result.

Proposition 10 Suppose that ψ0 is very small or that a+c2−1 > 0. Then,Z ∞
0

∂π1
∂τ

¯̄̄̄
¯
τ=0

dt = −4q1
3

(a+ c2 − 1)
(a+ c2)r(r − y2)[

(a+ c2)r

a+ c2 − 1 − y2] < 0Z ∞
0

∂π2
∂τ

¯̄̄̄
¯
τ=0

dt =
2

3
q2

(a+ c2 − 1)
(a+ c2)r(r − y2)[

(a+ c2)r

a+ c2 − 1 − y2] > 0.
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Note that the second inequality means that the foreign national welfare
rises as a result of the imposition of the home export tax.

7 Concluding Remarks

In this paper, we developed a dynamic model to analyze the optimal innova-
tion and imitation of a local firm, which is competing with a firm in another
country. The model is used to analyze how the technology of the home firm
may be improved if the firm chooses (or is forced) to innovate or to imitate.
One important feature of this paper is that it examines how the home firm
chooses between innovation and imitation. Our analysis shows that under
certain conditions, the home firm may choose to imitate first, then innovate,
and then imitate. The firm chooses to do that because in some periods it
is more cost effective to imitate while at some other times innovation is a
better way of improving technology even though the option of learning from
a foreign firm is available.
Endogenizing the choice between innovation and imitation, which is rarely

done in the literature, is useful and can be used to explain why some economies
choose to prohibit privacy at some stages of their development.
The present model is based on some simplifying assumptions. Some of

these assumptions are common in the literature; for example, one firm in
one market, no domestic consumption, Cournot competition, and so on. We
did make some further assumptions; for example, a linear demand. The
latter assumption allows us to derive the function forms and even an explicit
solution.
One assumption that requires more explanation is that the technology of

the foreign firm is kept constant over time. This assumption greatly simpli-
fies the present analysis as we have one less variable to solve for. We now
see what implications this assumption has. The most direct consequence is
that we have ignored the interactions and competition between the firms in
terms of technology, although they still compete in terms of output. Another
implication is that in the long run the technology of the home firm is not less
than that of the foreign firm. This is because the home firm is always able
to imitate at no cost. So soon or later the home technology must rise up to
at least the foreign technology level. Of course, if the home firm decides to
innovate, it may surpass the foreign firm. These two possibilities, however,
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are not consistent with some cases, as many firms in developing countries
constantly lag behind the advanced firms in the North. To capture this fact,
however, we can relax some of the assumptions in this paper. For exam-
ple, we can assume that imitation also is costly and requires the spending
of some resources. In this case, it is possible that imitation will stop before
the marginal cost of the home firm drops down to be the same as that of the
foreign firm. However, in this case, the distinction between innovation and
imitation is no longer so clear. Moreover, assuming a costly imitation does
not change our analysis much.
An alternative approach is to assume that the foreign firm’s technology

keeps on improving. In this case, it is possible that in a steady state there re-
mains a constant gap between the two firms’ technological levels even though
both of them are rising over time. In this case, it is necessary to explain how
the foreign firm’s technology is improved. If the foreign technology improve-
ment is assumed exogenous, the present analysis does not require too much
changed.13 The more interesting case is the one in which the two firms com-
pete both in technology and output.14

13See, for example, Krugman (1979).
14See, for example, Spencer and Brander (1983), for an analysis, but they do not consider

the issues examined in the present paper.
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Appendix

Proof of Proposition 1. We first check Theorem 1 of existence can
be applied to our problem. Let us define u(x, c) and f(x, c) as

u(x, c) ≡ 1

9b
[2c− (a+ c2)]2 − F1 − g(x) (A1)

f(x, c) ≡ −xc. (A2)

First, it is clear that both u(x, c) and f(x, c) are continuous. Second, defining
U as the closed interval [0, x], we see that U is bounded and closed. Third,
let φ0(t) ≡ [a+c2]2/9b+F1+g(x) and φ1(t) ≡ xc0. Then we can see that (6)
and (7) are satisfied for all admissible pairs (x(t), c(t)) and all t ≥ 0. Fourth,
defining k(d, e)k ≡ [d2 + e2]1/2, d, e ∈ R1, we see that k(d, e)k ≤ |d| + |e| .
Therefore, it follows from (6) and (7) that for all (x, c, t)°°°(u(x, c)e−rt, f(x, c))°°° ≤ ¯̄̄

u(x(t), c(t))e−rt
¯̄̄
+ |f(x(t), c(t))|

≤ 1

9b
[a+ c2]

2 + F1 + g(x) + xc0.

Therefore (8) holds if d(t) is an arbitrary piecewise continuous, non-negative
function and

e(t) ≡ 1

9b
[a+ c2]

2 + F1 + g(x) + xc0.

Fifth, under the specification (A1) and (A2), we have

N(c, U, t) =
½µ·

1

9b
{2c− (a+ c2)}2 − F1 − g(x)

¸
e−rt + z,−xc

¶
: x ∈ [0, x], z ≤ 0.}

For any given (c, t), the set N(c, U, t) can be depicted as the shaded area in
Figure A1, which is clearly convex. Thus, all the five conditions are satisfied.
Finally, the pair (c(t), x(t)) ≡ (c0, 0)t=∞t=0 is an admissible pair.

Proof of Lemma 2. Recall that the set

N(c, U, t) = {(X,Y ) : δ ∈ [0, 1], x ∈ [0, x], z ≤ 0} ,
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is defined by

X =
·
1

9b
{2c− (a+ c2)}2 − F1 − δg(x)

¸
e−rt + z

Y = −δxc− (1− δ)h(c− c2)c.
We now show that this set is convex. Graphically it is shown in Figure A2.
Choose any two elements of the set, say (X1, Y1) and (X1, Y1), where

Xi ≡
·
1

9b
{2c− (a+ c2)}2 − F1 − δig(xi)

¸
e−rt + zi (A3)

Yi = −δixic− (1− δi)h(c− c2)c, (A4)

i = 1, 2. Since (Xi, Yi) ∈ N(c, U, t), δi ∈ [0, 1], xi ∈ [0, x], and zi ≤ 0 have
to hold for i = 1, 2. Considering the definition of convex sets, it suffices to
prove that for any φ ∈ [0, 1]

(φX1 + (1− φ)X2,φY1 + (1− φ)Y2) ∈ N(c, U, t) (A5)

For a given φ, let us define the following variables:

eδ ≡ φδ1 + (1− φ)δ2ex ≡ φδ1x1 + (1− φ)δ2x2eg ≡ φδ1g(x1) + (1− φ)δ2g(x2)ez ≡ φz1 + (1− φ)z2fX ≡ φX1 + (1− φ)X2eY ≡ φY1 + (1− φ)Y2.

Substituting (A3) and (A4) into (A5),fX = B − ege−rt + ez (A6)eY = −exc− [1− eδ]h(c− c2)c, (A7)

where B ≡ [{2c− (a+ c2)}2 − F1]e−rt/9b. First, (A6) can be rewritten as
fX = B − eδ egeδ e−rt + ez
≤ B − eδg µ exeδ

¶
e−rt + ez.
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The inequality is implied by the assumption that the function g(x) is strictly
convex. It follows that there is a non-negative ² such that

fX = B − eδg µ exeδ
¶
e−rt + ez − ² (A6)

Second, (A7) can be rewritten as

eY = −eδ exeδ c− [1− eδ]h(c− c2)c. (A7)

We now show that for any φ ∈ [0, 1] (φX1 + (1 − φ)X2,φY1 + (1 − φ)Y2) ∈
N(c, U, t). First, we note that if λ, δ1, δ2 ∈ [0, 1], so is eδ. Second, since ex is a
convex combination of x1and x2, and because both belong to [0, ex], so doesex. Third, since {φz1 + (1 − φ)z2} ≤ 0 and ² ≥ 0, so ez − ² < 0. Therefore
(fX, eY ) ∈ N(c, U, t).

33



x

g x( )

x
_�

Figure 1

The Graph of ( )g x



y

�( )y

�

Figure 2

A Possible Function �( )y

x
_



c1

�

.

.

Figure 3
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The Phase Diagram of Imitation
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The Phase Diagram of Imitation/Innovation:
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Innovation As A Constraint
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Resources Spent Over Time
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