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A Differential Game Theoretic Analysis of International 

Trade in Renewable Resources 

Abstract 

We use a Stackelberg differential game to model international trade in renewable resources 

between a monopsonistic buyer and a monopolistic seller. The buyer uses unit and ad valorem tariffs 

to indirectly encourage conservation of the renewable resource under study. First, we show that the 

efficacy of these trade policy instruments in furthering conservation depends essentially on whether 

harvesting costs are stock dependent or independent. When harvesting costs are stock independent, 

the optimal open loop tariffs are time consistent. In contrast, when harvesting costs are stock 

dependent, the optimal open loop tariffs are time inconsistent. Second, we point out that because the 

simultaneous use of both tariffs does not render one tariff extraneous, it makes sense for the buyer to 

use both tariffs concurrently. Third, we show that when the buyer uses both tariffs simultaneously, 

she can force the monopolistic seller to behave competitively. Finally, we discuss the implications of 

these and other findings for renewable resource conservation in general 
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A Differential Game Theoretic Analysis of International 

Trade in Renewable Resources 

1. Introduction 

Can trade policies be used to further the conservation of renewable resources? As noted by 

Barbier et al. (1994) and Burgess (1994), this question has assumed great significance in 

contemporary times. To see why trade policies might be relevant in the context of the conservation 

of renewable resources, note that wild resources such as fish, timber (from forests), ivory (from 

elephants), horns (from rhinoceroses), and non-timber products such as rattan, honey, and resins are 

all commonly traded between nations. However, today, there is considerable apprehension about the 

deteriorating stock levels of most important renewable resources.4 Given this state of affairs, the 

purpose of this paper is to analyze the effects of trade policy on the conservation of renewable 

natural resources.  

However, before we move to the details of the paper itself, let us first describe the 

contributions of the pertinent literature on international trade in renewable resources. Barbier and 

Schulz (1997) demonstrate that trade interventions may increase or decrease the equilibrium value of 

the species stock in a developing country that trades in this species with other nations. On the basis 

of this finding, they conclude that Aambiguous stock effects make trade interventions a poor policy 

instrument for securing biodiversity conservation@ (Barbier and Schulz, 1997, pp. 160-161). Schulz 

(1997) shows that the impacts of trade sanctions depend not only on the bioeconomic interactions 

between the species but also on the management system in the targeted nation. Therefore, the threat 

                                                           
4 For more on this see, Clark (1973), Jablonski (1991), and Pimm et al. (1995). 
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of trade sanctions will not necessarily result in lower harvesting and higher stocks of marine 

mammals.  

Brander and Taylor (1998) use a two-country, two-good model of trade in renewable 

resources to show that not only is the basic Agains from trade@ idea weakened by the presence of 

open access renewable resources but that tariffs imposed by a resource importing nation always 

benefit the resource exporter. Analyzing a two country model of the outcomes of unilateral fishery 

management, Emami and Johnston (2000) argue that the trade induced losses that arise from not 

managing this fishery can be mitigated by imposing import tariffs on the resource good. Maestad 

(2001) has examined the effects that timber trade limitations have on tropical deforestation. He 

shows that depending on the manner in which trade limitations affect the log prices of alternate tree 

qualities, trade limitations may decrease or increase timber logging. 

The question of the efficacy of trade policies in furthering the conservation of renewable 

resources has, in all likelihood, been discussed most extensively in the context of the ivory trade 

between developing countries in Africa and East Asian and other western nations. In an early 

contribution, Barbier et al. (1990) argued against a ban on trade in ivory and suggested an alternate 

strategy. This strategy would allow limited trade in ivory and the aim of this strategy would be to 

create sufficient incentives for the sustainable management of African elephant populations. In the 

aftermath of the Convention on International Trade in Endangered Species (CITES) ban on ivory 

trade, Bulte and van Kooten (1999) studied the desirability of allowing some ivory trade. Bulte and 

van Kooten (1999) caution against lifting the trade ban. In particular, they point out that allowing 

some trade in ivory would encourage illegal poaching and that this could drive the African elephant 

to extinction. In a more recent paper, Heltberg (2001) uses a numerical model to reason that the 

ivory trade ban is likely to reduce poaching. 

 
 4 



Even though these studies have certainly furthered our understanding of many facets of 

international trade in renewable resources, none of these studies have analyzed the connections 

between renewable resource harvesting costs and trade policy. Specifically, how does the stock 

dependence or the independence of harvesting costs affect the efficacy of trade policy? Although 

researchers thus far have not analyzed this question, as we shall see, the form of the harvesting cost 

function has significant implications for the efficacy of trade policy in furthering the conservation of 

renewable resources. 

The rest of this paper is organized as follows: Section 2 provides a detailed description of the 

Stackelberg differential game model of international trade in a renewable resource between a single 

buyer (the monopsonist) and a single seller (the monopolist). Section 3 studies the effects of trade 

policy when the renewable resource harvesting cost function is stock independent. Section 4 does 

the same for the case in which the harvesting cost function is stock dependent. Finally, section 5 

concludes and offers suggestions for future research on the nexuses between international trade and 

the conservation of renewable resources. 

2. The Stackelberg Differential Game 

Our model is adapted from Karp (1984) and Batabyal (1996). There is a single buyer (the 

monopsonist and the leader) of the renewable resource and this buyer purchases the resource from a 

single seller (the monopolist and the follower). If the renewable resource is the black rhinoceros 

horn, then the reader should think of our model as a description of the interaction between a 

monopolistic seller in an African country such as Zimbabwe and a monopsonistic buyer in a country 

such as Korea.5 Denote the stock of the renewable resource at time  by t x(t).6 The buyer=s utility 

                                                           
5 As noted by Milliken et al. (1993), traditional Korean medicine has sixteen rhino horn prescriptions. This, in large part, 
accounts for the great demand for the rhino horn in Korea. For interesting accounts of international trade in the horn of the black 
rhinoceros, see Milliken (1993) and Brown and Layton (2001). 
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note that all the variables that we work with depend on time. 



from consuming the resource at harvest level  is given by the concave and differentiable utility 

function  We assume that the domestic market in the buyer=s country is competitive so that 

, the price that consumers in the importing nation pay for this resource. The government 

of the importing nation has access to two trade policy instruments, namely, a unit tariff denoted by 

 and an ad valorem tariff denoted by  where  When the government in the 

importing nation uses the unit tariff n(t),  the price received by the monopolistic seller (exporter) is 

h(t)

a(t)

u(h).

p(h)u (h)=′

n(t) v = 1/(1+a).

p(h)- n(t).  Similarly, when this government uses the ad valorem tariff  the price received by the 

exporter is v(  

a(t),

t)p(h).

t =

T
-rt

0

J e∫

T
-rt

0

J e∫

[u(h)

[u(h)

-{

-

-n}h]dt,

dt.

The buyer=s payoff in the finite horizon games that we analyze in this paper is the discounted 

stream of the difference between the utility of consuming the resource at level  and the payment 

to the monopolistic seller, from time  to t =  Therefore, if we denote the interest rate by  

then the buyer=s payoff is  

h(t)

0 T. r,

 

b = p(h)   (1) 

 

when she uses a unit tariff. Similarly, when she uses the ad valorem tariff, her payoff is 

 

b = vp(h)h]     (2) 

 

The monopolistic seller maximizes profit and we assume that this seller gets no utility from 

consuming the resource under study. A major objective of this paper is to demonstrate the 

dependence of optimal trade policy on the form of the cost of harvesting the renewable resource x.  
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To this end, we analyze two kinds of harvest cost functions. The first kind of cost function, which 

we analyze in section 3, is stock independent and it depends only on the harvest level. Let us denote 

this thrice differentiable cost function by c(  where h  is harvest, h), c (h) 0′ ≥  and  The 

second kind of cost function, which we analyze in section 4, depends on the stock and on the harvest 

level. We denote this cost function by  where 

c (h) 0.′′ ≥

c(x)h, c (x 0)′ ≤  and c (x) 0.′′

)]dt

≥  All else being equal, the 

stock independent cost function is more relevant when the amount harvested is small in relation to 

the total size of the resource stock. In contrast, the stock dependent cost function is more relevant 

when the total size of the stock is small to begin with and/or when the amount harvested is a 

significant proportion of the total stock size. When the buyer uses a unit tariff, the seller=s payoff is 

-rt[p

-rt[v

n(t)

= x

(h)h

p(h)

)

= kx -

nh (

-C

c(x)h,

,

,

-C

(•

h(t).

 

T

s
0

=J e - •∫    (3) 

 

and when this buyer uses the ad valorem tariff, the seller=s payoff is 

 

T

s
0

=J e h )]dt,∫     (4) 

 

where C(  in equations (3) and (4) is c(h  and  respectively. )•

The buyer controls the tariffs  and  and the seller controls the harvest  As the 

leader, the buyer announces a tariff trajectory at the beginning of the game and this trajectory is 

exogenous to the seller. The buyer and the seller are constrained by the differential equation 

describing the dynamics of the resource stock. That equation is 

v(t)

dx(t)/dt h(t)      (5) 
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where 0 < k  and < r <∞ 0x(0)= > 0x  is given. Put differently, the net change in the resource stock 

over time is the difference between the natural growth  and the harvest  The reader should 

note that replacing the linear natural growth function with a general growth function 

kx h(t).

f(x)  does not 

alter the main points that we make in this paper. However, the algebra associated with the various 

derivations with the general growth function f(x)  is significantly more complicated. This is why we 

conduct the rest of the analysis in this paper with the linear natural growth function. 

We ascertain the different harvest trajectories by deriving a differential equation satisfied by 

the optimal  When we are able to compare the various differential equations without resorting to 

additional assumptions, we shall do so. However, the reader should note that because of the 

complexity of the underlying mathematics, in many cases it will not be possible to obtain general 

results.  

h(t).

Before ending this section, let us consider the benchmark case in which there is free trade. In 

other words, in this case the buyer is passive and she sets  or v(t  In this benchmark 

case, the seller solves a standard control problem. When the harvest cost function is stock 

independent, the optimal harvest rate solves 

n(t)= 0 )= 1.

{2p (h)+h p(h)- c (h)}h -(r - k){p(h)+h p(h)- c (h)}= 0,′ ′′ ′′ ′ ′   (6) 

and when the harvest cost function is stock dependent, the optimal harvest rate solves 

{2p (h)+h p(h)}h -(r - k){p(h)+h p(h)- c(x)} - k xc(x)= 0.′ ′′ ′ ′   (7) 

In what follows, we compare the differential equation satisfied by the optimal harvest level in 

section 3 with equation (6) and that in section 4 with equation (7). 

 

3. The Stock Independent Harvest Cost Function and Open Loop Tariffs 
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We now derive the optimal open loop unit and ad valorem tariffs for our monopsonistic 

buyer. The reader should note that although open loop tariffs are generally time inconsistent (see 



Karp and Newbery (1993) and Batabyal (1996)), for the case studied in this section, these open loop 

tariffs are time consistent. Before we explain why this is the case, let us first comprehend what 

would happen were these tariffs to be time inconsistent. If these tariffs were time inconsistent, then 

at some time t >  the buyer would want, if she could, to deviate from the tariff trajectory she 

announced at the beginning of the game (at time t =  and announce an alternate tariff trajectory. 

The monopolistic seller in this paper is forward looking. Therefore, he would anticipate the buyer=s 

desire to change the tariff trajectory she announced at the beginning of the game and hence this tariff 

would fail to accomplish its intended goals. In the class of Stackelberg games analyzed in this paper, 

the stock independence of the harvest cost function accounts for the time consistency of the optimal 

solution. To see this plainly, we now derive, in turn, the open loop unit and the ad valorem tariffs. 

0

0)

3.1. The Open Loop Unit Tariff 

We solve the buyer=s problem using a procedure delineated in Simaan and Cruz (1973), Karp 

(1984), and Batabyal (1996). The essential idea is as follows: The buyer treat=s the seller=s first order 

condition as an ordinary constraint and his costate variable as a state variable. These two conditions 

and apposite boundary conditions convert the underlying differential game into a control problem for 

the buyer. 

When the seller takes the buyer=s unit tariff  as given, the first order necessary conditions 

to his problem are 

n(t)

p(h)+h p(h)- c (h)- - n = 0λ′ ′      (8) 

and 

= (r - k) ,λ λ       (9) 

where (t)λ  is the costate variable. This costate variable tells us the seller=s marginal utility of one 

more unit of the resource stock at time t.  The reader should note that equation (9) describes a jump 

state constraint. That is, the initial value of , (0),λ λ  is free and the value of this jump state variable at 
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any arbitrary point in time is determined by present and/or future events. In other words, equation 

(9) is not a fixed initial state constraint for the buyer.7 Now solving for  from equation (8) and 

substituting in equation (1), we get 

n

h

h(t)

dt

 

T
-rt

b
0

=J e [u(h)-{c (h)+ -h p(h)} ]dt.λ′ ′∫   (10) 

 

Equation (10) gives the buyer=s payoff as the present discounted stream of the difference between the 

utility of consuming  and the sum of the marginal harvest cost times the harvest  and the 

term 

h(t) h(t)

h,λ  less the slope of the inverse demand function times the harvest  The term . hλ  can be 

interpreted as the total instantaneous rent paid by the buyer for the resource x.  

In order to keep the buyer=s problem a one state variable problem, let us eliminate λ  from 

(10) by using (9). Solving equation (9), it is clear that (t)= 0.λ  Substituting this value of λ  into (10) 

we get 

 

T
-rt

b
0

=J e [u(h)-{c (h)-h p(h)}h] .′ ′∫   (11) 

 

Note that we have now converted the buyer=s problem from one of maximizing (1) over  subject to 

(5) to one of maximizing (11) over  subject to (5). The first order necessary conditions to this 

problem are 

n

h

2p(h)+ p (h)+2h p(h)- h c(h)- c (h)- = 0,h η′′ ′ ′′ ′     (12) 

                                                           
7 For more on jump state constraints see Karp and Newbery (1993). 
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and 

= (r - k) ,η η       (13) 

where (t)η  is the costate variable. Inspecting (12), we see that the solution to the buyer=s problem 

does not depend on the initial stock of the resource 0.x  This explains why the optimal solution to the 

buyer=s problem is time consistent. Put differently, because it is optimal to set (t)= 0,λ  the total 

instantaneous rent paid by the buyer for the resource x  does not influence her maximization 

problem. Consequently, the question of altering the total instantaneous rent paid to the seller over 

time does not arise.  

To find the differential equation satisfied by the optimal  when our buyer uses a unit 

tariff, differentiate (12) with respect to time and then use (13) to simplify the resulting expression. 

This yields 

h(t)

2{3p (h)+ p (h)+4h p(h)- h c(h)- 2c (h)}h -h′ ′′′ ′′ ′′′ ′′  

2(r - k){p(h)+ p (h)+2h p(h)- h c(h)- c (h)}= 0,h ′′ ′ ′′ ′    (14) 

where is the boundary condition 

for h.  Comparing equations (14) and (6) it is clear that the optimal harvest level when the buyer uses 

a unit tariff is not identical to the optimal harvest level when this buyer is passive. When the inverse 

demand function is linear {p

2p{h(T)}+{h(T) p {h(T)}+2h(T)p {h(T)}= h(T)c {h(T)}+c {h(T)}} ′′ ′ ′′ ′

(h)= - h, > 0, > 0}α β α β

2= /2},h

 and the harvest cost function is quadratic  

 the differential equation for the optimal harvest with a unit tariff approximates the 

differential equation for the optimal harvest when the buyer is passive. This notwithstanding, there 

are no straightforward necessary or sufficient conditions under which (6) and (14) coincide. The 

differential equation for the optimal unit tariff is found by differentiating (8) with respect to time and 

then using (9) to simplify the ensuing expression. This gives 

{c(h)

n -(r - k)n = {2p (h)+h p(h)- c (h)}h -(r - k){p(h)+h p(h)- c (h)}′ ′′ ′′ ′ ′ ,   (15) 
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where  is given by (14) and h n(T)= p{h(T)}+h(T)p {h(T)} - c {h(T)}′ ′  is the boundary condition. 

3.2. The Open Loop Ad Valorem Tariff 

We now derive the solution for the open loop ad valorem tariff when the buyer=s objective is 

(2). To maximize (4) subject to (5), we first form the seller=s current value Hamiltonian. The relevant 

first order necessary conditions are 

v{p(h)+h p(h)} - c (h)- = 0,λ′ ′      (16) 

and (9). Now solve for v  from (16), substitute into (2), and then simplify the resulting expression. 

We get 

 

T
-rt

b
0

=J e [u(h)-{c (h)+ } (h)]dt,λ φ′∫   (17) 

 

where (h)= h/[1+{1/ (h)}]φ θ  and (h)θ  is the price elasticity of demand. With this substitution, the 

buyer=s problem is to maximize (17) over h,  subject to (5) and (9). The first order necessary 

conditions to this problem are 

1p(h)-{c (h)+ } (h)- c (h) (h)- = 0,λ φ φ η′ ′ ′′    (18) 

1 = (r - k) ,1η η       (19) 

and 

2 = (h)+k ,2φη η      (20) 

where 1η  and 2η  are the costate variables associated with constraints (5) and (9).  

The differential equation satisfied by the optimal harvest  can be determined by 

differentiating (18) with respect to time and then simplifying. This gives 

h

{p (h)- c (h) (h)- 2c (h) (h)- c (h) (h)- (h)}h -φ φ φ λφ′ ′ ′′ ′′ ′ ′′′ ′′  
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(r - k){p(h)- c (h) (h)- c (h) (h)- (h)}= 0,φ φ λφ′ ′ ′′ ′    (21) 

where p{h(T)}= c {h(T)} {h(T)}+c {h(T)} {h(T)}φ φ′ ′ ′′  is the boundary condition. In similar fashion, the 

differential equation for the optimal ad valorem tax is obtained by differentiating (16) with respect to 

time and then simplifying. We get 

{p(h)+h p(h)}v+{2v p(h)+v hp(h)- c (h)}h -(r - k){vp(h)+v hp(h)- c (h)}= 0,′ ′ ′′ ′′ ′ ′  (22) 

where  is given by (21) and the boundary condition for  is 

 We now discuss the implications of our findings thus far. 

h

(T)}

v

v(T)[p{h +h(T)p {h(T)}] = c {h(T)}.′ ′

3.3. Discussion 

Recently, Batabyal and Beladi (2002) have shown that when a monopsonistic buyer of a 

renewable resource faces competitive sellers, irrespective of whether she uses a unit or an ad 

valorem tariff, her payoff is unchanged. In other words, the leader=s payoff is policy invariant. 

Comparing equations (17) and (10) we see that this Apolicy invariance@ result does not hold when a 

monopsonistic buyer of a renewable resource trades with a monopolistic seller. Moreover, the 

Batabyal and Beladi (2002) paper also tells us that when a monopsonistic buyer faces competitive 

sellers, the optimal open loop unit and ad valorem tariffs are equivalent. Now, because the payoff 

functions (17) and (10) are not identical, it follows that in the case studied in this paper, the two 

tariffs are not equivalent. Put differently, the use of these two trade policy instruments will give rise 

to dissimilar time profiles of harvests and hence to different terminal levels of the resource stock. 

Equation (13) tells us that (t)= 0, _t.η  In other words, the buyer=s marginal utility of one 

additional unit of the resource stock is zero. Using this value of the marginal utility in (12) we get an 

implicit equation for the domestic price of the renewable resource in the importing nation. That 

equation is 

2p(h)= c (h)+h c(h)- p (h)- 2h p(h), _t.h′ ′′ ′′ ′     (23) 
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The reader will note that the domestic price of the renewable resource in the importing nation does 

not depend on the initial value of the resource stock 0.x  This is yet another implication of the fact 

that when the harvest cost function is stock independent, the optimal solution to the buyer=s problem 

is time consistent. 

Since the optimal unit and ad valorem tariffs are not equivalent, it is of considerable interest 

to determine what happens when our buyer uses both tariffs simultaneously. When the buyer uses 

both tariffs simultaneously, the seller maximizes 

 

T
-rt

s
0

=J e [vp(h)h-nh-c(h)]dt∫    (24) 

 

over  subject to (5). The first order necessary conditions to this problem include h,

p(h)n = v{ +h p(h)} - c (h)- .λ′ ′

(t)= 0

 Now, substituting this condition into the buyer=s payoff function and 

then using λ  gives 

 

T
-rt 2

b
0

=J e vh[u(h)+ p (h)-h c(h)]dt.′ ′∫   (25) 

 

Inspecting (25) we see that the buyer=s current value Hamiltonian is linear and decreasing in v.  

Because v  it is optimal to set  and this last condition tells us that  and 0≥ , v = 0 a(t)=∞ n(t)= -c (h).′  

In words, when our monopsonistic buyer uses both tariffs simultaneously, it is optimal for her to 

levy an infinite ad valorem tariff {a(t)= }∞ and to offer a unit subsidy {  to the seller. 

Now substituting  in (25) and comparing the resulting equation with equation (11) in Batabyal 

and Beladi (2002) we see that when our buyer uses both tariffs simultaneously, she is able to force 

n(t)= -c′(h)}

v = 0
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the monopolistic seller to behave competitively. This means that the harvest rate of the resource is 

the same whether a competitive seller faces an optimal tariff of either kind or a monopolistic seller 

faces optimal unit and ad valorem tariffs. This last result obtains because the simultaneous use of 

unit and ad valorem tariffs allows our buyer to shift and rotate the inverse demand function. As a 

result, she is able to confront the monopolistic seller with an infinitely elastic non-stationary 

function. Finally, note that unlike the result obtained for the competitive case studied in Batabyal 

and Beladi (2002), the concurrent use of both tariffs does not make one tariff superfluous. 

Recall that the objective of the importing nation is to encourage the conservation of the 

renewable resource. In this regard we note that because the tariffs studied here are time consistent, 

they will achieve their intended conservation aims, albeit obliquely. Having said this, we should also 

point out that if an importing nation=s goal is to encourage conservation of the renewable resource in 

the exporting country, then tariffs are not the ideal policy instruments. Why not? This is because 

tariffs target trade and the direct consequence of the tariff is to discourage domestic consumption in 

the importing nation. Tariffs do not do anything directly to promote conservation of the renewable 

resource in the exporting nation. Therefore, from the standpoint of resource conservation, tariffs are 

blunt policy instruments. We now analyze the Stackelberg differential game between our 

monopsonistic buyer and the monopolistic seller when the harvest cost function is stock dependent. 

4. The Stock Dependent Harvest Cost Function and Open Loop Tariffs 

When the harvest cost function is stock dependent, the optimal open loop unit and ad 

valorem tariffs are time inconsistent. As explained in section 3, this means that at some time t >  

the buyer will want, if she can, to depart from the tariff trajectory she announced at time  and 

announce a different tariff trajectory. The monopolistic seller in this paper is forward looking. 

Therefore, he will anticipate the buyer=s desire to alter the tariff trajectory she announced at the 

beginning of the game and hence this tariff will fail to attain its intended conservation objectives. To 

0

0t =
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grasp this critical feature of the optimal policies clearly, we now derive the optimal open loop unit 

and ad valorem tariffs. 

4.1. The Open Loop Unit Tariff 

Recall from section 2 that the stock dependent harvest cost function is  We follow the 

section 3 method to solve our buyer=s problem. Suppose the monopolistic seller takes the buyer=s 

unit tariff  as given. Then, the first order necessary conditions to his problem are 

c(x)h.

n(t)

p(h)+h p(h)- n - c(x) - = 0λ′      (26) 

and 

= (r - k) +c (x)hλ λ ′ ,     (27) 

where (t)λ  is the costate variable. This costate variable gives us the seller=s marginal utility of one 

more unit of the resource stock at time t.  Comparing (27) with (9) it is at once clear that when the 

harvest cost function is stock dependent, (t)_0.λ  In words, the rent on the marginal unit of the 

resource stock is typically not equal to zero. Now solving for  from equation (26) and then 

substituting into equation (1), we get 

n

 

T
-rt 2

b
0

=J e h[u(h)+ p (h)-{c(x)+ }h]dt.λ′∫   (28) 

 

Equation (28) tells us that the buyer=s payoff is the present discounted stream of the utility of 

consuming the harvest  and the term h(t) 2p (h)h ′  less the sum of the cost of harvesting h(t)  and the 

term h.λ  As in section 3, this last term can be interpreted as the total instantaneous rent paid by the 

buyer for the resource x.  

In order to keep the buyer=s problem a single state variable problem, we now use (27) to 

eliminate λ  from (28). Integrating equation (27) we get 
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T
(k -r)(T -t) -(k -r)t (k -r)m

t

(t)= (T)-e e e c (x)hdm.λ λ ′∫     (29) 

 

Substituting this value of (t)λ  from (29) into (28) we obtain 

 

T T
-rt 2 (k -r)(T -t) -(k -r)t (k -r)m

b
0 t

=J e h e e e[u(h)+ p (h)-c(x)h-{ (T)- c (x)hdm}h]dt.λ′ ′∫ ∫
 (30) 

 

Equation (30) tells us that for any trajectory of  the buyer=s payoff function is maximized by 

setting 

h(t),

(T)= 0.λ  By doing this, our buyer drives the monopolistic seller=s rent to zero at the 

conclusion of the game. Now substitute (T)= 0λ  into (30) and then reverse the order of integration 

of the last term in (30). This gives 

 

T
-rt 2 kt

b 0
0

= -J e h e x[u(h)+ p (h)-c(x)h+c (x)h{′ ′∫ x}]dt.  (31) 

 

As desired, we now have a single state variable control problem for our buyer. In particular, we have 

converted the buyer=s problem from one of maximizing (1) over  subject to (5) to one of 

maximizing (31) over h  subject to (5). Comparing equations (31) and (11) we see that unlike the 

case studied in section 3, when the harvest cost function is stock dependent, the initial resource stock 

n

0x  enters the buyer=s payoff function. The first order necessary conditions to our monopsonistic 

buyer=s problem are 

2 kt
0p(h)+2h p(h)+ p (h)- c(x)+c (x){ - x(t)} - = 0h e x η′ ′′ ′ ,  (32) 
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and 

kt
0= (r - k) +2h c(x)- c (x)h{ - x(t)}e xη η ′ ′′ ,   (33) 

where (t)η  is the costate variable. Equation (32) tells us that when the harvest cost function is stock 

dependent, the solution to the buyer=s problem does depend on the initial stock of the renewable 

resource 0.x  This has the following implication: at some time m >  if the buyer were able to revise 

the tariff she initially announced at the beginning of the game, then 

0,

0x  in (32) would have to be 

replaced with x(m)  and the solution for all  would be different. Put differently, the buyer=s 

optimal solution is time inconsistent. From (32) and (33) it is clear that the optimal solution is time 

consistent if and only if the harvest cost function is unrelated to the stock of the resource. Indeed, 

this is precisely what we demonstrated in our analysis of the stock independent harvest cost function 

in section 3.  

t > m

Before deriving a differential equation satisfied by the optimal h(t)  a comment on the 

salience of constraint (27) is in order. When the seller exerts market power, he is subject to the 

sequence of static constraints implied by the buyer=s optimizing behavior. However, these 

constraints enter the seller=s problem as parameters and this is what allows him to solve a standard 

control problem. In contrast, when the buyer exerts market power, she is constrained by the dynamic 

optimizing behavior of the seller. This means that the buyer solves a non-standard control problem. 

As noted in Karp (1984), because the seller=s problem is dynamic and the buyer exerts market 

power, a Arational expectations@ constraint, given by equation (27), is introduced into the buyer=s 

problem. The reader will recall that in section 3.1, we called this Arational expectations@ constraint a 

jump state constraint.

,

8 
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To determine the differential equation satisfied by the optimal h(t)  when our buyer uses a 

unit tariff, we differentiate (32) with respect to time and then use (33) to simplify the resulting 

expression. This gives 

2 2 kt
0{3p (h)+4h p(h)+ p (h)}h -(r - k){p(h)+2h p(h)+ p (h)- c(x)+ c (x)- c (x)x}+h h e x′ ′′ ′′′ ′ ′′ ′ ′  

kt kt
0 0c (x){2h - 2kx+ }+k xc(x){ - x}= 0,ke x x e′ ′′    (34) 

where 2 kT
0p{h(T)}+2h(T)p {h(T)}+{h(T) p {h(T)}= c{x(T)}+c {x(T)}{x(T)- }+ (T)} e x η′ ′′ ′

h.

0

 is the 

boundary condition for  Inspecting (34), we see that the exogenously given initial condition 

x(0)= x  affects the temporal behavior of the optimal harvest  Comparing equations (34) and 

(7) it is clear that as in section 3, the optimal harvest level when our monopsonistic buyer uses a unit 

tariff and the harvest cost function is stock dependent is not identical to the optimal harvest level 

when this buyer is passive. Furthermore, there are no perceptible necessary or sufficient conditions 

under which equations (7) and (34) coincide. The differential equation for the optimal unit tariff is 

found by differentiating (26) with respect to time and then using (27) to simplify the resulting 

expression. This gives 

h(t).

n - (r - k)n = {2p (h)+h p(h)}h -(r - k){p(h)+h p(h)- c(x)} - k xc(x),′ ′′ ′ ′   (35) 

where  is given by (34) and the boundary condition is  h n(T)= p{h(T)}+h(T)p {h(T)} - c{x(T)}.′

4.2. The Open Loop Ad Valorem Tariff 

When the seller takes the buyer=s ad valorem tariff as given, the first order necessary 

conditions to his control problem are 

v{p(h)+h p(h)} - c(x) - = 0,λ′      (36) 

and (27). Solving for v  from (36), substituting into (2), and then simplifying the resulting 

expression, we get 
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T
-rt

b
0

= [u(h)-{c(x)+ } (h)]dt,J e λ φ∫    (37) 

 

where the functions (h)φ  and (h)θ  are as specified in section 3.2. Comparing (37) and (28) it is clear 

that these two payoff functions are not identical. Hence, unlike the finding for the competitive sellers 

case contained in Batabyal and Beladi (2002), the unit and the ad valorem tariffs are now not 

equivalent.  

Two methods can be used to pose and analyze our buyer=s maximization problem. Using the 

first method, we eliminate λ  from (37) by following the procedure described in section 4.1. The use 

of this method results in a one state variable control problem for our buyer. The solution to this 

problem is time inconsistent because the elimination of λ  from (37) results in the initial resource 

stock 0x  entering our buyer=s payoff function. Using the second method (see section 3.2) we analyze 

a two state variable version of the buyer=s problem. With this second method, it is difficult to see the 

time inconsistency of the optimal solution in general. Nevertheless, we use this method because it 

provides an alternate perspective on the time inconsistency of the optimal solution and because we 

have already demonstrated how the first method can be used. 

Our buyer=s problem is to maximize (37) over  subject to (5) and (27). The first order 

necessary conditions to this problem are 

h

1 2u (h)- (h){c(x)+ }- + c (x)= 0,φ λ η η′ ′ ′    (38) 

1 1 2- (r - k) = (h)c (x) - hc (x),φη η η′ ′′     (39) 

and 

2 = (h)+k ,2φη η      (40) 

where 1η  and 2η  are the costate variables associated with (5) and (27). The difficulty in 

demonstrating the time inconsistency of the optimal solution ((38)-(40)) arises from the presence of 

 
 20 



the (generally nonlinear) (h)φ  function in (40). However, when the inverse demand function is 

isoelastic, i.e., when -bp(h) , b (0,1),∈= h (h)φ  is linear and we can show the time inconsistency of 

the above optimal solution in a straightforward manner. 

-b, b 0,1), (h)=h φ

-

(0)=

(∈

0.

h/(1-

-ktb)

                             

2(tη

2

)=

η

2η

When p(h)= b).

2(tη

2

 Now substitute this result in (40) and solve the 

resulting differential equation. We get(1  This solution uses the result that 

it is optimal to set 

t
-km

0

)= h(m)dme e .∫

η 9 Also, solving (5), we get  Equating these last 

two solutions we conclude that 

t
-kt

0
0

- x(t)=x e ∫ -kmh(m)dm.e

kt
0 - x(t)e x .

1- b
     (41) 

 

Now, inspecting (38) we see that the optimal harvest of the renewable resource under study is 

affected by the costate variable  which gives us the marginal value to the buyer of an increase in 

the seller=s rent. In turn,  is a function of the initial resource stock 0.x  Therefore, the optimal 

harvest is itself a function of the initial resource stock ,0x  and following the logic of the argument of 

section 4.1, this optimal solution too is time inconsistent. Put differently, the solution that results 

when we use this second method to solve the buyer=s problem is time inconsistent because at the 

beginning of the game our buyer is able to choose the initial level of the seller=s rent and hence we 

have 2(0)= 0.η  However, once this initial rent has been chosen, (27)Cthe jump state or rational 

expectations constraintCis a binding constraint on the buyer=s problem. Having said this, we note 

                              
9 For more on this result, see Simaan and Cruz (1973), Karp (1984), Karp and Newbery (1993), and Batabyal (1996). 
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once again that the optimal solution ((38)-(40)) is time consistent if and only if the harvest cost 

function is unrelated to the stock of the resource. 

To find a differential equation for the optimal harvest, differentiate (38) with respect to time 

and then use (39) and (40) to simplify the resulting expression. This gives 

2[p (h)- (h){c(x)+ }]h -(r - k){p(h)- (h)c(x)+ c (x)}+φ λ φ η′ ′′ ′ ′  

2 2c (x){k - kx (h)}+k x c(x)= 0,φη η′ ′ ′′      (42) 

where 0 1p{h(0)}= {h(0)}{c( )+ (0)}+ (0)xφ λ η′

2

 is the boundary condition. Inspecting (42), we see 

that η  and hence the initial resource stock 0x(0)= x  influences the temporal behavior of the 

optimal harvest h(t)  Comparing equations (42) and (7) it is plain that the optimal harvest when our 

buyer uses an ad valorem tariff and the harvest cost function is stock dependent is not identical to 

the optimal harvest when this buyer is passive. Further, as before, there are no straightforward 

necessary or sufficient conditions under which (42) and (7) coincide. The differential equation for 

the optimal ad valorem tariff can be found by differentiating (36) with respect to time and then 

simplifying. We get 

.

{p(h)+h p(h)}v+v{2p (h)+h p(h)}h -(r - k){vp(h)+v hp(h)- c(x)} - k xc(x)= 0′ ′ ′′ ′ ′  (43) 

and the boundary condition is v(T)[p{h(T)}+h(T)p {h(T)}] = c{x(T)}.′  We now discuss the 

connections between the form of the harvest cost function, the buyer=s trade (tariff) policies, and the 

efficacy of these policies in furthering the conservation of the renewable resource under study. 

4.3. Discussion 

Batabyal and Beladi (2002) have shown that when a monopsonistic buyer of a renewable 

resource faces competitive sellers, irrespective of whether she uses a unit or an ad valorem tariff, her 

payoff is unchanged. In section 3, we noted that this result does not hold when the seller (exporter) is 

a monopolist, the buyer (importer) is a monopsonist, and the harvest cost function is stock 
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independent. Now, comparing equations (37) and (28) we see two things. First, the Batabyal and 

Beladi (2002) Apolicy invariance@ result also does not hold when the exporter is a monopolist, the 

importer is a monopsonist, and the harvest cost function is stock dependent. Second, because the 

payoff functions given by (37) and (28) are not identical, the two tariffs themselves are not 

equivalent. Stated differently, the use of these two trade policy instruments will give rise to different 

time profiles of harvests and hence to different terminal levels of the resource stock. 

Upon rearranging terms in (32), we get an implicit equation for the domestic price of the 

renewable resource in the importing nation. That equation is 

kt 2
0p(h)= c(x)- c (x){ - x(t)} - 2h p(h)- p (h)+ (t)= 0, _t,e x h η′ ′ ′′    (44) 

where (t)η  is the buyer=s marginal utility of an additional unit of the resource at time  Note that 

because the harvest cost function is stock dependent, unlike the case discussed in section 3.3, the 

buyer=s marginal utility of one more unit of the resource stock 

t.

(t)η  is now no longer equal to zero. 

Also, the initial value of the resource stock now affects the domestic price of the renewable resource 

in the importing nation. Comparing equations (23) and (44) we see that, in general, it is not possible 

to determine whether the domestic price is higher with the stock independent or with the stock 

dependent harvest cost function. Further, observe that 0x  affects the optimal solution when the 

harvest cost function is stock dependent. In contrast, 0x  does not affect the optimal solution in the 

case of the stock independent harvest cost function. Also, it is not possible, in general, to determine 

whether the terminal value of the resource stock x(T)  is higher with the stock independent or with 

the stock dependent harvest cost function. 

We now show that when our buyer uses both tariffs concurrently, she can force the 

monopolistic seller to behave competitively. Since the logic of the argument is very similar to that 

employed in section 3.3, our discussion of this result will be brief. The first order necessary 
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condition to the seller=s maximization problem is n = v{p(h)+h p(h)} - c (x) - .λ′ ′  Now, substituting 

this condition into the buyer=s payoff function, we get 

 

T
2-rt

b
0

= [u(h)+ p (h)- hc(x) - h]dt.J e vh λ′∫    (45) 

 

Inspecting (45) we can tell that the buyer=s current value Hamiltonian is linear and decreasing in v.  

Since , it is optimal to set  and this last requirement tells us that v 0≥ v = 0 a(t)=∞  and 

n(t)= }.-{c(x)+λ  In words, when our monopsonistic buyer uses both tariffs simultaneously, it is 

optimal for her to set an infinite ad valorem tariff [a(t)= ]∞  and to offer a unit subsidy 

[n(t)= + }-{c(x) ]λ  to the seller. Now substituting  in (45) and comparing the resulting 

equation with equation (21) in Batabyal and Beladi (2002) we see that when our buyer uses both 

tariffs simultaneously, she is able to force the monopolistic seller to behave competitively. In other 

words, the harvest rate of the resource is the same whether a competitive seller faces an optimal 

tariff of either kind or a monopolistic seller faces optimal unit and ad valorem tariffs. As explained 

in section 3.3, this last result holds because the simultaneous use of unit and ad valorem tariffs 

allows our buyer to shift and rotate the inverse demand function. Finally, note that unlike the 

competitive case studied in Batabyal and Beladi (2002), the coincidental use of both tariffs does not 

make one tariff extraneous. 

v = 0

The analysis in this paper has shown that efforts to further renewable resource conservation 

by means of trade policies are problematic in more ways than one. We now discuss this important 

point in greater detail. The analysis in Karp and Newbery (1993) and in Batabyal (1998) tells us that 

given a choice between time consistent and inconsistent policies, an economic agent will generally 

choose time inconsistent policies because inconsistent policies lead to a higher payoff. In the setting 
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of our paper, this tells us than even when the open loop unit and ad valorem tariffs are time 

inconsistent, and this happens when the harvest cost function is stock dependent, the buyer in the 

importing nation will prefer to use these inconsistent trade policies rather than follow a time 

consistent course of action. Nevertheless, inconsistent policies are not believable and hence the tariff 

trajectory announced by the buyer at the beginning of the game will not be believed by the seller and 

therefore inconsistent policies will fail to attain their intended resource conservation objectives. 

In contrast, when the harvest cost function is stock independent, the optimal open loop tariffs 

are time consistent and hence plausible from the standpoint of the monopolistic seller. Therefore, in 

this case, the buyer=s trade policies (tariffs) will, albeit indirectly, attain their resource conservation 

aims. As indicated previously in section 3.3, in an ideal situation, trade policies such as tariffs should 

not be used to promote the conservation of renewable resources. This is because tariffs reduce the 

domestic consumption of the traded resource in the importing nation and hence get at the 

conservation issue in an oblique manner. However, if the seller is unwilling and/or unable to take 

measures in his own nation to further resource conservation, perhaps because of the lack of 

appropriate property rights, then tariffs are one imperfect instrument with which the seller can be 

encouraged to take the relevant conservation measures.  

Although tariffs are an imperfect way of promoting conservation, the analysis in this paper 

has shown that they may not function as desired when they are most needed. Why not? Because the 

believability of the optimal tariffs depends on the form of the harvest cost function and this form is 

not controllable by the buyer. The extant literature on international trade in renewable resources has 

not recognized this essential point. The reader should note that the stock dependent cost function is 

the more appropriate cost function for threatened renewable resources such as the African black 

rhinoceros. Renewable resources like the African black rhinoceros are threatened, inter alia, because 

satisfactory domestic measures designed to prevent overexploitation have not been taken in the 
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relevant nations. In the case of the African black rhinoceros, the pertinent nations include Namibia, 

South Africa, and Zimbabwe. It is for these threatened resources, where the proper domestic 

conservation measures have not been taken, that imperfect supra-national measures such as trade 

policies are most useful. Regrettably, the analysis in this paper tells us that trade policies are likely 

to be ineffectual (because they are not believable) precisely when they are most needed (when the 

harvest cost function is stock dependent). 

5. Conclusions 

In this paper we conducted a Stackelberg differential game theoretic analysis of international 

trade in renewable resources between a monopolistic seller (the follower) and a monopsonistic buyer 

(the leader). Trade policies, i.e., unit and ad valorem tariffs are used by the government in the 

importing nation to obliquely further the conservation of the renewable resource under study. Unlike 

the finding contained in Batabyal and Beladi (2002), the optimal open loop unit and ad valorem 

tariffs are not equivalent. Consequently, when the buyer uses both tariffs concurrently, she is able to 

effectively dispense with the market power of the seller by forcing him to behave competitively. The 

efficaciousness of trade policies in furthering resource conservation is contingent upon the form of 

the harvest cost function. Our analysis shows that because of believability problems, trade policies 

such as tariffs are likely to be ineffectual in furthering the conservation of threatened renewable 

resources. 

The analysis in this paper can be extended in a number of different directions. We now 

propose two possible extensions. First, given the time inconsistency of the optimal solution when the 

harvest cost function is stock dependent, it would be useful to compare and contrast the properties of 

time inconsistent and time consistent tariffs in a differential game model of international trade in 

renewable resources. Second, it would be interesting to study the trade game between a monopolistic 

seller and a fringe of competitive buyers and one dominant buyer. An examination of these aspects 
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of the problem will allow richer analyses of the nexuses between international trade, trade policies, 

and the conservation of renewable resources. 
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